论文标题
Argyres-Douglas理论,S-二元性和AGT对应关系
Argyres-Douglas Theories, S-duality and AGT Correspondence
论文作者
论文摘要
我们为四维n = 2 u(2)量表理论的插度函数提出了一个nekrasov型公式,该函数耦合到(a_1,d_ {2n})argyres-douglas理论。这是通过将广义的AGT对应扩展到U(2)量规组的情况来进行的,该量规组要求我们定义Virasoro和Heisenberg代数的直接总和的不规则状态。使用我们的公式,可以评估在U(2)Instanton Moduli空间上每个固定点(A_1,D_ {2N})理论的贡献。作为应用程序,我们评估了(A_3,A_3)理论的intsanton分区函数,以在与SU(2)仪表理论具有四种基本口味的特殊关系中找到它。从这个关系中,我们阅读了S-偶像组如何作用于(A_3,A_3)理论的紫外线量表耦合。
We propose a Nekrasov-type formula for the instanton partition functions of four-dimensional N=2 U(2) gauge theories coupled to (A_1,D_{2n}) Argyres-Douglas theories. This is carried out by extending the generalized AGT correspondence to the case of U(2) gauge group, which requires us to define irregular states of the direct sum of Virasoro and Heisenberg algebras. Using our formula, one can evaluate the contribution of the (A_1,D_{2n}) theory at each fixed point on the U(2) instanton moduli space. As an application, we evaluate the instanton partition function of the (A_3,A_3) theory to find it in a peculiar relation to that of SU(2) gauge theory with four fundamental flavors. From this relation, we read off how the S-duality group acts on the UV gauge coupling of the (A_3,A_3) theory.