论文标题

几次分类的空间对比学习

Spatial Contrastive Learning for Few-Shot Classification

论文作者

Ouali, Yassine, Hudelot, Céline, Tami, Myriam

论文摘要

在本文中,我们探讨了几次分类的对比度学习,在其中我们建议将其用作额外的辅助培训目标,以作为数据依赖性正规化器,以促进更通用和可转移的功能。特别是,我们提出了一个新型的基于注意力的空间对比目标,以学习本地歧视性和类不足的特征。结果,我们的方法克服了交叉渗透损失的某些局限性,例如它对看到的类别的过度歧视,从而降低了特征向看不见的类别的可传递性。通过广泛的实验,我们表明所提出的方法的表现优于最先进的方法,从而确认学习良好和可转移的嵌入对于几次学习的重要性。

In this paper, we explore contrastive learning for few-shot classification, in which we propose to use it as an additional auxiliary training objective acting as a data-dependent regularizer to promote more general and transferable features. In particular, we present a novel attention-based spatial contrastive objective to learn locally discriminative and class-agnostic features. As a result, our approach overcomes some of the limitations of the cross-entropy loss, such as its excessive discrimination towards seen classes, which reduces the transferability of features to unseen classes. With extensive experiments, we show that the proposed method outperforms state-of-the-art approaches, confirming the importance of learning good and transferable embeddings for few-shot learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源