论文标题
具有基质权重的伯格曼投影的加权估计值
Weighted estimates of the Bergman projection with matrix weights
论文作者
论文摘要
我们为伯格曼投影(Bergman Profoctution)建立了一类伪convex域的矩阵权重的加权不等式。我们扩展了Aleman-Constantin的结果,并获得了以下估计$ p $:\ [\ | p \ | _ {l^2(ω,w)} \ leq c(\ Mathcal b_2(w))^{2}。 $ c $是一个独立于权重$ W $的常数,但取决于尺寸和域。
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: \[\|P\|_{L^2(Ω,W)}\leq C(\mathcal B_2(W))^{2}.\] Here $\mathcal B_2(W)$ is the Bekollé-Bonami constant for the matrix weight $W$ and $C$ is a constant that is independent of the weight $W$ but depends upon the dimension and the domain.