论文标题

在几个复杂变量中,伴有其差分差异算子的唯一定理与其差分差异算子

Uniqueness theorems of meromorphic functions with their differential-difference operators in several complex variables

论文作者

Huang, XiaoHuang

论文摘要

文章中的一个示例表明,$ f(z)= \ frac {2} {1-e^{ - 2z}} $共享$ 0 $ cm和$ 1,\ infty $ im at shift $πi$无法获得的第一个衍生物。在本文中,我们研究了共同函数共享小功能的独特性,以及其有关其$ k-th $衍生产品的转变。我们将作者的结果\ cite {h}从整个函数到meromorphic函数,第一个衍生物的差分差异多项式,也是对小函数的有限值。至于$ k = 0 $,我们获得:让$ f(z)$是$ρ_{2}(f)(f)<1 $的先验性突出功能\ hat {s}(f)$是$ f(z)$的两个不同的小功能,因此$ a(z)$是一个定期功能,带有$ c $,$ b(z)$是$ f(z)$的任何小函数。如果$ f(z)$和$ f(z+c)$ share $ a_ {1}(z),\ infty $ cm,然后共享$ a_ {2}(z)$ im,则$ f(z)\ equiv f(z) \ frac {f(z+c)-a_ {1}(z+c)}} {f(z)-a_ {1}(z)} \ equiv \ equiv \ equAc {a_ {2}(z+c)(z+c)是$ρ(p)<1 $的非恒定整体函数,因此$ e^{p(z+c)} \ equiv e^{p(z)} $。

An example in the article shows that the first derivative of $f(z)=\frac{2}{1-e^{-2z}}$ sharing $0$ CM and $1,\infty$ IM with its shift $πi$ cannot obtain they are equal. In this paper, we study the uniqueness of meromorphic function sharing small functions with their shifts concerning its $k-th$ derivatives. We improves the author's result \cite{h} from entire function to meromorphic function, the first derivative to its differential-difference polynomial, and also finite values to small functions. As for $k=0$, we obtain: Let $f(z)$ be a transcendental meromorphic function of $ρ_{2}(f)<1$, let $c$ be a nonzero finite value, and let $a_{1}(z)\not\equiv\infty, a_{2}(z)\not\equiv\infty\in \hat{S}(f)$ be two distinct small functions of $f(z)$ such that $a(z)$ is a periodic function with period $c$ and $b(z)$ is any small function of $f(z)$. If $f(z)$ and $f(z+c)$ share $a_{1}(z),\infty$ CM, and share $a_{2}(z)$ IM, then either $f(z)\equiv f(z+c)$ or $$e^{p(z)}\equiv \frac{f(z+c)-a_{1}(z+c)}{f(z)-a_{1}(z)}\equiv \frac{a_{2}(z+c)-a_{1}(z+c)}{a_{2}(z)-a_{1}(z)},$$ where $p(z)$ is a non-constant entire function of $ρ(p)<1$ such that $e^{p(z+c)}\equiv e^{p(z)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源