论文标题
用于流量异常的图形卷积网络
Graph Convolutional Networks for traffic anomaly
论文作者
论文摘要
事件检测一直是运输的重要任务,其任务是检测大型事件破坏城市交通网络的大部分时的时间。图像服务供应商的旅行信息{origan-destination}(OD)矩阵数据具有巨大的潜力,可以为我们提供见解,以发现历史模式并区分异常。但是,要充分捕获空间和时间交通模式仍然是一个挑战,但对于有效的异常检测起着至关重要的作用。同时,现有的异常检测方法没有很好地填补极端数据稀疏性和高维挑战,这在OD矩阵数据集中很常见。为了应对这些挑战,我们以一种新颖的方式提出问题,因为在一组定向的加权图中检测异常,在每个时间间隔内代表交通状况。我们进一步提出\ textIt {上下文增强图自动编码器}(\ textbf {con-gae}),它利用图表的图表和上下文嵌入技术来捕获空间流量网络模式,同时围绕数据稀疏性和高态度问题进行工作。 CON-GAE采用自动编码器框架,并通过半监督学习来检测异常。广泛的实验表明,当在几个现实世界中的大型OD矩阵数据集上应用,我们的方法可以实现曲线(AUC)评分比最新异常检测基线的0.1-0.4改进。
Event detection has been an important task in transportation, whose task is to detect points in time when large events disrupts a large portion of the urban traffic network. Travel information {Origin-Destination} (OD) matrix data by map service vendors has large potential to give us insights to discover historic patterns and distinguish anomalies. However, to fully capture the spatial and temporal traffic patterns remains a challenge, yet serves a crucial role for effective anomaly detection. Meanwhile, existing anomaly detection methods have not well-addressed the extreme data sparsity and high-dimension challenges, which are common in OD matrix datasets. To tackle these challenges, we formulate the problem in a novel way, as detecting anomalies in a set of directed weighted graphs representing the traffic conditions at each time interval. We further propose \textit{Context augmented Graph Autoencoder} (\textbf{Con-GAE }), that leverages graph embedding and context embedding techniques to capture the spatial traffic network patterns while working around the data sparsity and high-dimensionality issue. Con-GAE adopts an autoencoder framework and detect anomalies via semi-supervised learning. Extensive experiments show that our method can achieve up can achieve a 0.1-0.4 improvements of the area under the curve (AUC) score over state-of-art anomaly detection baselines, when applied on several real-world large scale OD matrix datasets.