论文标题
内核无关的指数总和
A Kernel-Independent Sum-of-Exponentials Method
论文作者
论文摘要
我们为内核函数的新型指数总和(SOE)近似提出了一种准确的算法,并基于SOE开发了一种快速算法,用于卷积正交算法,该算法允许$ n $ n $计算的订单$ n $计算,用于$ n $ n $的时间步,近似近似持续的时间集成。 SOE方法是通过DelaVallée-Poussin和半分析指数扩展的组合来构建的,用于一般核的半分析指数膨胀,以及一种模型还原技术,用于最小化给定误差下指数数量的数量。我们将SOE扩展用于分裂卷积内核的有限部分,从而可以将卷积积分作为由于指数核而成为普通微分方程的系统。我们算法的重要特征是SOE方法是有效且准确的,并且适用于具有正向指数的可控上限的通用核。我们为新的SOE方法和基于SOE的卷积正交提供数值分析。在不同内核上的数值结果,卷积积分和积分方程表明了所提出方法的准确性和效率的有吸引力。
We propose an accurate algorithm for a novel sum-of-exponentials (SOE) approximation of kernel functions, and develop a fast algorithm for convolution quadrature based on the SOE, which allows an order $N$ calculation for $N$ time steps of approximating a continuous temporal convolution integral. The SOE method is constructed by a combination of the de la Vallée-Poussin sums for a semi-analytical exponential expansion of a general kernel, and a model reduction technique for the minimization of the number of exponentials under given error tolerance. We employ the SOE expansion for the finite part of the splitting convolution kernel such that the convolution integral can be solved as a system of ordinary differential equations due to the exponential kernels. The significant features of our algorithm are that the SOE method is efficient and accurate, and works for general kernels with controllable upperbound of positive exponents. We provide numerical analysis for both the new SOE method and the SOE-based convolution quadrature. Numerical results on different kernels, the convolution integral and integral equations demonstrate attractive performance of both accuracy and efficiency of the proposed method.