论文标题
手机:极有效的RGB-D显着对象检测
MobileSal: Extremely Efficient RGB-D Salient Object Detection
论文作者
论文摘要
神经网络的高计算成本阻止了RGB-D显着对象检测(SOD)的最新成功,从而使现实世界中的应用受益。因此,本文介绍了一个新颖的网络Mobilesal,该网络专注于使用移动网络进行深层特征提取的有效RGB-D SOD。但是,与麻烦的网络相比,移动网络在功能表示方面的功能不力。为此,我们观察到,如果正确利用了颜色图像的深度信息可以增强与SOD相关的特征表示形式。因此,我们提出了一种隐式深度恢复(IDR)技术,以增强移动网络对RGB-D SOD的特征表示能力。 IDR仅在训练阶段采用,并在测试过程中被省略,因此它在计算上是不含计算的。此外,我们提出了有效的多级特征聚集的紧凑型金字塔改进(CPR),以得出具有清晰边界的显着对象。借助IDR和CPR合并,Mobilesal在六个挑战性的RGB-D SOD数据集上以更快的速度(450fps的输入尺寸为320 $ \ times $ 320 $ 320)和较少的参数(650万)的六个具有挑战性的RGB-D SOD数据集(450fps)进行了有利的表现。该代码在https://mmcheng.net/mobilesal上发布。
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this paper introduces a novel network, MobileSal, which focuses on efficient RGB-D SOD using mobile networks for deep feature extraction. However, mobile networks are less powerful in feature representation than cumbersome networks. To this end, we observe that the depth information of color images can strengthen the feature representation related to SOD if leveraged properly. Therefore, we propose an implicit depth restoration (IDR) technique to strengthen the mobile networks' feature representation capability for RGB-D SOD. IDR is only adopted in the training phase and is omitted during testing, so it is computationally free. Besides, we propose compact pyramid refinement (CPR) for efficient multi-level feature aggregation to derive salient objects with clear boundaries. With IDR and CPR incorporated, MobileSal performs favorably against state-of-the-art methods on six challenging RGB-D SOD datasets with much faster speed (450fps for the input size of 320 $\times$ 320) and fewer parameters (6.5M). The code is released at https://mmcheng.net/mobilesal.