论文标题

双变量稳定多项式的光谱密度函数

Spectral density functions of bivariable stable polynomials

论文作者

Geronimo, Jeffrey S., Woerdeman, Hugo J., Wong, Chung Y.

论文摘要

进一步研究了稳定的多变量多项式$ p(z)$与其光谱密度函数的傅立叶系数$ 1/| p(z)|^2 $之间的关系。在本文中,我们着重于傅立叶系数的径向渐近造物,以选择两个可变多项式的特定选择。分析中出现高几何功能,并为其得出了新的结果。

The relationship between a stable multivariable polynomial $p(z)$ and the Fourier coefficients of its spectral density function $1/|p(z)|^2$, is further investigated. In this paper we focus on the radial asymptotics of the Fourier coefficients for a specific choice of a two variable polynomial. Hypergeometric functions appear in the analysis, and new results are derived for these as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源