论文标题
一维anyons的线性光学动力学
Linear-optical dynamics of one-dimensional anyons
论文作者
论文摘要
我们研究了在汉密尔顿二次二次创建和歼灭算子的效果下,研究在一维晶格上定义的骨气和费米式的动力学,通常称为线性光学元件。这些任何人模型是通过在不同晶格位点之间引入非平凡交换阶段的标准骨气或费米子交换关系的变形获得的。我们研究了Anyonic交换阶段对通常的骨髓和费米子束行为的影响。我们展示了如何利用这些颗粒所表现出的固有的Aharonov-bohm效应,以构建确定性的,纠缠的两个Qubit Gate并证明这些系统中的量子计算普遍性。我们定义了玻色剂的连贯状态,并在两种线性光学设备下研究其行为。特别是,我们证明,对于交换因子的特定值,Anyonic镜像可以生成CAT状态,这是具有连续变量的量子信息处理中的重要资源。
We study the dynamics of bosonic and fermionic anyons defined on a one-dimensional lattice, under the effect of Hamiltonians quadratic in creation and annihilation operators, commonly referred to as linear optics. These anyonic models are obtained from deformations of the standard bosonic or fermionic commutation relations via the introduction of a non-trivial exchange phase between different lattice sites. We study the effects of the anyonic exchange phase on the usual bosonic and fermionic bunching behaviors. We show how to exploit the inherent Aharonov-Bohm effect exhibited by these particles to build a deterministic, entangling two-qubit gate and prove quantum computational universality in these systems. We define coherent states for bosonic anyons and study their behavior under two-mode linear-optical devices. In particular we prove that, for a specific value of the exchange factor, an anyonic mirror can generate cat states, an important resource in quantum information processing with continuous variables.