论文标题
$ \ text {t} \ bar {\ text {t}} $ - 变形的非线性schrödinger
$\text{T}\bar{\text{T}}$-deformed Nonlinear Schrödinger
论文作者
论文摘要
$ \ text {t} \ bar {\ text {t}} $ - 2D lorentz不变理论的变形经典的拉格朗日可以从原始理论中得出,仅在裸露的$ \ \ text {t} {t} \ bar {\ bar {\ text {t text {t}} $ compoitte字段中,只能在第一阶通过裸露的$ \ \ text {t} <bar bar {t}。举例来说,以通用潜力的非线性schrödinger(NLS)模型,我们将此思想应用于非相关模型。变形拉格朗日的形式包含一个平方根,与相对论玻色子相似,但与之不同。我们研究了变形的明亮,灰色和平毛的孤子溶液。与幼稚的期望相反,$ \ text {t} \ bar {\ text {t}} $ - 具有四分之一势的非线性schrödingernls的扰动并不能从变形的SINH-GORDON FIELD理论的标准非相关限制中脱颖而出。 $ c \ rightarrow \ infty $结果对应于不同类型的无关变形。我们得出相应的泊松支架结构,运动方程,并讨论这种替代类型的扰动的各种有趣方面,包括与最近的文献的联系。
The $\text{T}\bar{\text{T}}$-deformed classical Lagrangian of a 2D Lorentz invariant theory can be derived from the original one, perturbed only at first order by the bare $\text{T}\bar{\text{T}}$ composite field, through a field-dependent change of coordinates. Considering, as an example, the nonlinear Schrödinger (NLS) model with generic potential, we apply this idea to non-relativistic models. The form of the deformed Lagrangian contains a square-root and is similar but different from that for relativistic bosons. We study the deformed bright, grey and Peregrine's soliton solutions. Contrary to naive expectations, the $\text{T}\bar{\text{T}}$-perturbation of nonlinear Schrödinger NLS with quartic potential does not trivially emerge from a standard non-relativistic limit of the deformed sinh-Gordon field theory. The $c \rightarrow \infty$ outcome corresponds to a different type of irrelevant deformation. We derive the corresponding Poisson bracket structure, the equations of motion and discuss various interesting aspects of this alternative type of perturbation, including links with the recent literature.