论文标题

正交对称矩阵和图的连接

Orthogonal symmetric matrices and joins of graphs

论文作者

Levene, Rupert H., Oblak, Polona, Šmigoc, Helena

论文摘要

我们引入了多种矩阵的兼容性概念。这引起了两个(可能是断开连接的)图$ g $和$ h $的连接的必要条件,以作为正交对称矩阵的模式,或等效地,对于$ g \ vee h $的最小数量的不同eigenValues $ q $等于两个。在其他假设下,我们表明这种必要条件也足够。作为一个应用程序,我们证明$ q(g \ vee h)$是$ g $和$ h $是完整图的工会时,我们在每种情况发生时表征。

We introduce a notion of compatibility for multiplicity matrices. This gives rise to a necessary condition for the join of two (possibly disconnected) graphs $G$ and $H$ to be the pattern of an orthogonal symmetric matrix, or equivalently, for the minimum number of distinct eigenvalues $q$ of $G\vee H$ to be equal to two. Under additional hypotheses, we show that this necessary condition is also sufficient. As an application, we prove that $q(G\vee H)$ is either two or three when $G$ and $H$ are unions of complete graphs, and we characterise when each case occurs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源