论文标题
尖锐的二阶不确定性原理
Sharp second order uncertainty principles
论文作者
论文摘要
我们研究了欧几里得空间中的caffarelli-kohn-nirenberg类型的尖锐的二阶不等式,$ \ mathbb {r}^{n} $,其中$ n $表示维度。该分析等同于研究特殊类矢量场的不确定性原理的研究。特别是,我们表明,当从标量字段切换$ u:\ rr^n \ rightarrow \ mathbb {c} $转换为表格$ \ vec {u}的向量字段:= \ nabla u $($ u $($ u $)是标量的标量范围)在Heisenberg noceptionty interiply(Hup)中的最佳常数( $ \ frac {n^{2}} {4} $ to $ \ frac {(n+2)^{2}} {4} {4} $,氢不确定性原理(HYUP)的最佳常数从$ \ frac {\ frac {\ frac {\ weft(n-1 \ right)^{n-1 \右) $ \ frac {(n+1)^{2}} {4} $。由于结果,我们回答了Maz'ya(整体方程式操作员理论2018)的开放问题,$ n = 2 $涉及divergence Free Vector Fields的HUP。
We study sharp second order inequalities of Caffarelli-Kohn-Nirenberg type in the euclidian space $\mathbb{R}^{N}$, where $N$ denotes the dimension. This analysis is equivalent to the study of uncertainty principles for special classes of vector fields. In particular, we show that when switching from scalar fields $u: \rr^n\rightarrow \mathbb{C}$ to vector fields of the form $\vec{u}:=\nabla U$ ($U$ being a scalar field) the best constant in the Heisenberg Uncertainty Principle (HUP) increases from $\frac{N^{2}}{4}$ to $\frac{(N+2)^{2}}{4}$, and the optimal constant in the Hydrogen Uncertainty Principle (HyUP) improves from $\frac{\left( N-1\right)^{2}}{4}$ to $\frac{(N+1)^{2}}{4}$. As a consequence of our results we answer to the open question of Maz'ya (Integral Equations Operator Theory 2018) in the case $N=2$ regarding the HUP for divergence free vector fields.