论文标题

深层股票交易:用于投资组合优化和订购执行的分层加强学习框架

Deep Stock Trading: A Hierarchical Reinforcement Learning Framework for Portfolio Optimization and Order Execution

论文作者

Wang, Rundong, Wei, Hongxin, An, Bo, Feng, Zhouyan, Yao, Jun

论文摘要

通过增强学习的投资组合管理是金融科技研究的最前沿,该研究探讨了如何长期通过反复试验将基金最佳地重新分配到不同的金融资产中。现有方法是不切实际的,因为他们通常认为每个重新分配可以立即完成,因此忽略了作为交易成本的一部分价格跌倒。为了解决这些问题,我们提出了一个用于投资组合管理(HRPM)的分层加强股票交易系统。具体而言,我们将交易过程分解为投资组合管理的层次结构,而不是贸易执行,并培训相应的政策。高级政策使投资组合权重较低,以最大化长期利润,并援引低级政策,以较小的频率以较高的频率销售或购买相应的股票以最大程度地降低交易成本。我们通过培训前计划和迭代培训方案来培训两个级别的政策,以提高数据效率。美国市场和中国市场的广泛实验结果表明,HRPM在许多最新方法中取得了重大改善。

Portfolio management via reinforcement learning is at the forefront of fintech research, which explores how to optimally reallocate a fund into different financial assets over the long term by trial-and-error. Existing methods are impractical since they usually assume each reallocation can be finished immediately and thus ignoring the price slippage as part of the trading cost. To address these issues, we propose a hierarchical reinforced stock trading system for portfolio management (HRPM). Concretely, we decompose the trading process into a hierarchy of portfolio management over trade execution and train the corresponding policies. The high-level policy gives portfolio weights at a lower frequency to maximize the long term profit and invokes the low-level policy to sell or buy the corresponding shares within a short time window at a higher frequency to minimize the trading cost. We train two levels of policies via pre-training scheme and iterative training scheme for data efficiency. Extensive experimental results in the U.S. market and the China market demonstrate that HRPM achieves significant improvement against many state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源