论文标题

更加模糊deBlur:多blur2deblur,以进行有效的视频

Blur More To Deblur Better: Multi-Blur2Deblur For Efficient Video Deblurring

论文作者

Park, Dongwon, Kang, Dong Un, Chun, Se Young

论文摘要

视频DeBlurring的关键组件之一是如何利用相邻的框架。最新的最新方法要么将相邻框架与中心框架对齐,要么将过去框架上的信息反复地传播到当前帧。在这里,我们提出了多blut-deblur(MB2D),这是一个新颖的概念,可以利用相邻框架来进行有效的视频脱布。首先,受到UNSHARP屏蔽的启发,我们认为使用更模糊的图像具有长时间的曝光作为其他输入可显着提高性能。其次,我们提出了可以从相邻框架中综合更模糊的图像的多重复发神经网络(MBRNN),通过现有的视频脱布方法可以大大提高性能。最后,我们建议使用MBRNN(MSDR)连接的复发特征图提出多尺度的脱蓝,以快速和内存有效的方式在流行的GOPRO和SU数据集上实现最先进的性能。

One of the key components for video deblurring is how to exploit neighboring frames. Recent state-of-the-art methods either used aligned adjacent frames to the center frame or propagated the information on past frames to the current frame recurrently. Here we propose multi-blur-to-deblur (MB2D), a novel concept to exploit neighboring frames for efficient video deblurring. Firstly, inspired by unsharp masking, we argue that using more blurred images with long exposures as additional inputs significantly improves performance. Secondly, we propose multi-blurring recurrent neural network (MBRNN) that can synthesize more blurred images from neighboring frames, yielding substantially improved performance with existing video deblurring methods. Lastly, we propose multi-scale deblurring with connecting recurrent feature map from MBRNN (MSDR) to achieve state-of-the-art performance on the popular GoPro and Su datasets in fast and memory efficient ways.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源