论文标题

SINH模型中扭结的真空极化能

Vacuum Polarization Energy of the Kinks in the Sinh-Deformed Models

论文作者

Takyi, I., Barnes, B., Ackora-Prah, J.

论文摘要

我们将单环量子校正计算到SINH呈现的$ ϕ^{4} $和$φ^{6} $模型的串联能量中。这些模型是由众所周知的多项式$ ϕ^{4} $和$φ^{6} $模型通过变形过程构建的。我们还将真空偏振能计算到非多项式函数$ u(ϕ)= \ frac {1} {4} {4}(1- \ sinh^{2} ϕ)^{2} $。该潜力接近标量函数小值的限制的$ ϕ^{4} $模型。这些能量是从散射数据中提取的,以进行有关扭结溶液的波动。我们表明,对于某些具有非等效真空吸尘器的拓扑领域,SINH构成模型的扭结解决方案是不稳定的。

We compute the one-loop quantum corrections to the kink energies of the sinh-deformed $ϕ^{4}$ and $φ^{6}$ models in one space and one time dimensions. These models are constructed from the well-known polynomial $ϕ^{4}$ and $φ^{6}$ models by a deformation procedure. We also compute the vacuum polarization energy to the non-polynomial function $U(ϕ)=\frac{1}{4}(1-\sinh^{2}ϕ)^{2}$. This potential approaches the $ϕ^{4}$ model in the limit of small values of the scalar function. These energies are extracted from scattering data for fluctuations about the kink solutions. We show that for certain topological sectors with non-equivalent vacua the kink solutions of the sinh-deformed models are destabilized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源