论文标题
通过单独的特征嵌入和流形对齐方式的灵活深度转移学习
Flexible deep transfer learning by separate feature embeddings and manifold alignment
论文作者
论文摘要
对象识别是各个行业和国防的关键推动力。随着技术的变化,算法必须与新的要求和数据保持同步。新的方式和更高的分辨率传感器应允许算法鲁棒性提高。不幸的是,在现有标记的数据集中训练的算法不会直接概括为新数据,因为数据分布不匹配。转移学习(TL)或域适应(DA)方法已建立了将知识从现有标记的源数据传输到新的未标记目标数据集的基础。但是,当前的DA方法假定源和目标特征空间相似,并且在大规模域移动或特征空间变化的情况下遭受痛苦。现有方法假设数据是相同的模态,或者可以与公共特征空间保持一致。因此,大多数方法并非旨在支持基本领域的变化,例如视觉到听觉数据。我们提出了一个新颖的深度学习框架,该框架通过学习每个域的单独提取特征提取,同时最大程度地减少潜在的低维空间中的域之间的距离,从而克服了这一限制。对齐是通过考虑数据歧管以及对抗性训练程序来实现的。我们通过对合成,测量和卫星图像数据集进行了几项消融实验,证明了方法与传统方法的有效性。我们还提供了训练网络的实用指南,同时克服消失的梯度,这些梯度抑制了某些对抗性训练环境中的学习。
Object recognition is a key enabler across industry and defense. As technology changes, algorithms must keep pace with new requirements and data. New modalities and higher resolution sensors should allow for increased algorithm robustness. Unfortunately, algorithms trained on existing labeled datasets do not directly generalize to new data because the data distributions do not match. Transfer learning (TL) or domain adaptation (DA) methods have established the groundwork for transferring knowledge from existing labeled source data to new unlabeled target datasets. However, current DA approaches assume similar source and target feature spaces and suffer in the case of massive domain shifts or changes in the feature space. Existing methods assume the data are either the same modality, or can be aligned to a common feature space. Therefore, most methods are not designed to support a fundamental domain change such as visual to auditory data. We propose a novel deep learning framework that overcomes this limitation by learning separate feature extractions for each domain while minimizing the distance between the domains in a latent lower-dimensional space. The alignment is achieved by considering the data manifold along with an adversarial training procedure. We demonstrate the effectiveness of the approach versus traditional methods with several ablation experiments on synthetic, measured, and satellite image datasets. We also provide practical guidelines for training the network while overcoming vanishing gradients which inhibit learning in some adversarial training settings.