论文标题
关于台球,投射几何和Mahler卷的放克观点
A Funk perspective on billiards, projective geometry and Mahler volume
论文作者
论文摘要
我们探索了由希尔伯特度量标准的Funk Metric提供的连接,在投射几何形状,台球,凸几何和仿射不平等之间。我们首先表明,在投射转换和投射双重性下,Funk Metric的许多公制不变性是不变的。其中包括凸子集的Holmes-Thompson体积和表面积,以及其边界的长度光谱,扩展了Schäffer双重猜想的Holmes-Thompson和ÁlvarezPaiva的结果。我们特别探索了芬克台球,该台球以与Minkowski台球概括欧几里得的方式相同,并扩展了Gutkin-Tabachnikov对Minkowski Billiards的双重性的结果。 接下来,我们考虑放克几何形状中向外球的体积。我们推测与体积最大化剂相对应的一般仿射不平等,其中包括Blaschke-Santaló和Centro-fraffine等含量不平等作为极限情况,并证明了无条件的身体,为无条件的身体提供了Hilbert Metricric to hilbert Metricric的新的证明。作为一种副产品,我们获得了较高的球和黄利不平等时刻的概括,从而增强了无条件身体的blaschke-santaló不平等。最后,我们介绍了配备了放克度量的平滑凸出二维二维组的总体积的正规化,类似于打结的O'HaraMöbius能量,并表明它是凸体的投射不变。
We explore connections furnished by the Funk metric, a relative of the Hilbert metric, between projective geometry, billiards, convex geometry and affine inequalities. We first show that many metric invariants of the Funk metric are invariant under projective transformations as well as projective duality. These include the Holmes-Thompson volume and surface area of convex subsets, and the length spectrum of their boundary, extending results of Holmes-Thompson and Álvarez Paiva on Schäffer's dual girth conjecture. We explore in particular Funk billiards, which generalize hyperbolic billiards in the same way that Minkowski billiards generalize Euclidean ones, and extend a result of Gutkin-Tabachnikov on the duality of Minkowski billiards. We next consider the volume of outward balls in Funk geometry. We conjecture a general affine inequality corresponding to the volume maximizers, which includes the Blaschke-Santaló and centro-affine isoperimetric inequalities as limit cases, and prove it for unconditional bodies, yielding a new proof of the volume entropy conjecture for the Hilbert metric for unconditional bodies. As a by-product, we obtain generalizations to higher moments of inequalities of Ball and Huang-Li, which in turn strengthen the Blaschke-Santaló inequality for unconditional bodies. Lastly, we introduce a regularization of the total volume of a smooth strictly convex 2-dimensional set equipped with the Funk metric, resembling the O'Hara Möbius energy of a knot, and show that it is a projective invariant of the convex body.