论文标题

在遥感参数估计和因果推理中扭曲了高斯过程

Warped Gaussian Processes in Remote Sensing Parameter Estimation and Causal Inference

论文作者

Mateo-Sanchis, Anna, Muñoz-Marí, Jordi, Pérez-Suay, Adrián, Camps-Valls, Gustau

论文摘要

本文在遥感应用程序中介绍了扭曲的高斯流程(WGP)回归。 WGP模型输出观测作为GP的参数非线性转换。然后,通过标准最大似然学习了此类模型的参数。我们展示了从多光谱数据,植被参数(叶绿素,叶子面积指数和分数植被覆盖)中估算海洋叶绿素含量的拟议模型的良好性能,以及在28个双分歧质量地球上的收集中检测到因果方向而检测到的因果方向。该模型在准确性和更明智的置信区间方面始终如一地表现优于标准GP和更高级的异质GP模型。

This paper introduces warped Gaussian processes (WGP) regression in remote sensing applications. WGP models output observations as a parametric nonlinear transformation of a GP. The parameters of such prior model are then learned via standard maximum likelihood. We show the good performance of the proposed model for the estimation of oceanic chlorophyll content from multispectral data, vegetation parameters (chlorophyll, leaf area index, and fractional vegetation cover) from hyperspectral data, and in the detection of the causal direction in a collection of 28 bivariate geoscience and remote sensing causal problems. The model consistently performs better than the standard GP and the more advanced heteroscedastic GP model, both in terms of accuracy and more sensible confidence intervals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源