论文标题

估计超临界表面quasigeSostrophic方程的奇异集的尺寸

Estimate on the dimension of the singular set of the supercritical surface quasigeostrophic equation

论文作者

Colombo, Maria, Haffter, Silja

论文摘要

我们考虑由$α<\ frac {1} {2} $的分数拉普拉斯给出的SQG方程。我们引入了一个合适的弱解决方案的概念,该概念在每$ l^2 $初始基准中都存在,并且我们证明,对于这种解决方案,单数集包含在Hausdorff Dimension的时空集合中,最多可达$ \ frac {1} {1} {2α} {2α} \ left(\ frac {\ frac {\ frac {1 +α}α(1 +α}α(1-2-2α)$ 2 \ \ 2 \ y 2 \)

We consider the SQG equation with dissipation given by a fractional Laplacian of order $α<\frac{1}{2}$. We introduce a notion of suitable weak solution, which exists for every $L^2$ initial datum, and we prove that for such solution the singular set is contained in a compact set in spacetime of Hausdorff dimension at most $\frac{1}{2α} \left( \frac{1+α}α (1-2α) + 2\right)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源