论文标题

有影响力的人和巨大组成部分:隐私保护社会感染属性的基本硬度

Influencers and the Giant Component: the Fundamental Hardness in Privacy Protection for Socially Contagious Attributes

论文作者

Rezaei, Aria, Gao, Jie, Sarwate, Anand D.

论文摘要

已知相关性的存在使隐私保护更加困难。我们调查了一个个人网络上具有社会感染性属性的隐私,每个人都有属性可能会影响其他许多人采用它。我们表明,对于遵循独立级联模型的传染,存在一个巨大的感染节点连接组件,其中包含所有从同一集来源接收传染的节点的恒定分数。我们进一步表明,如果我们想以可接受的级别获得激活用户的估计,很难隐藏这个巨型连接组件的存在。此外,拥有这些知识的对手可以预测许多个人的真实状态(“主动”或“无效”),无论使用什么隐私(扰动)机制,许多人的可能性很大。作为案例研究,我们表明,瓦斯坦机制是一种专门针对相关数据设计的最先进的隐私机制,在我们的设置中计数估计中引入了质量$ω(n)$的噪声。我们为两类随机网络提供理论保证:在独立的级联模型下,ERDOS RENYI图和Chung-Lu Power-Law图。实验表明,受感染节点的巨大连接组件可以并且确实出现在现实世界网络中,并且简单的推断攻击可以揭示出良好的节点的状态。

The presence of correlation is known to make privacy protection more difficult. We investigate the privacy of socially contagious attributes on a network of individuals, where each individual possessing that attribute may influence a number of others into adopting it. We show that for contagions following the Independent Cascade model there exists a giant connected component of infected nodes, containing a constant fraction of all the nodes who all receive the contagion from the same set of sources. We further show that it is extremely hard to hide the existence of this giant connected component if we want to obtain an estimate of the activated users at an acceptable level. Moreover, an adversary possessing this knowledge can predict the real status ("active" or "inactive") with decent probability for many of the individuals regardless of the privacy (perturbation) mechanism used. As a case study, we show that the Wasserstein mechanism, a state-of-the-art privacy mechanism designed specifically for correlated data, introduces a noise with magnitude of order $Ω(n)$ in the count estimation in our setting. We provide theoretical guarantees for two classes of random networks: Erdos Renyi graphs and Chung-Lu power-law graphs under the Independent Cascade model. Experiments demonstrate that a giant connected component of infected nodes can and does appear in real-world networks and that a simple inference attack can reveal the status of a good fraction of nodes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源