论文标题
在多维立方Quintic非线性schrödinger方程中,在Soliton(In-)稳定性上
On soliton (in-)stability in multi-dimensional cubic-quintic nonlinear Schrödinger equations
论文作者
论文摘要
我们考虑具有聚焦的立方术语的非线性schrödinger方程,并在第二和三方面散发了偶数五位骨。本文的核心是孤立波的稳定性的概念。我们回想起在非线性Schrödinger方程中轨道稳定性的两个标准概念,并表明它们必须被视为彼此独立。我们从数值上研究了径向对称的情况下基态轨道稳定性的概念,从而确认了现有的猜想或导致新的猜想。
We consider the nonlinear Schrödinger equation with a focusing cubic term and a defocusing quintic nonlinearity in dimensions two and three. The core of this article is the notion of stability of solitary waves. We recall the two standard notions of orbital stability in the context of nonlinear Schrödinger equations, and show that they must be considered as independent from each other. We investigate numerically the notion of orbital stability of ground states in the radially symmetric case, confirming existing conjectures or leading to new ones.