论文标题

我们可以学习人们来自哪里吗?在合并情况下的起源回答

Can we learn where people come from? Retracing of origins in merging situations

论文作者

Gödel, Marion, Spataro, Luca, Köster, Gerta

论文摘要

行人人群模拟的一个关键信息是从起源到某个目标的代理数量。尽管此设置对模拟有很大的影响,但在大多数设置中,找到应在模拟中的源中产生的代理数量。通常,根据建模者和活动组织者的调查和经验选择数字。这些方法很重要且有用,但是当我们想执行实时预测时达到了极限。在这种情况下,有关流入的静态信息是不够的。相反,我们需要每次启动预测时都可以检索的动态信息。如今,通常可以使用传感器数据,例如视频录像或GPS轨道。如果我们可以估算从该传感器数据中某个来源的行人数量,我们可以动态初始化模拟。在这项研究中,我们使用可以从传感器数据得出的密度热图作为随机森林回归器的输入来预测原点分布。我们研究了三个不同的数据集:模拟数据集,实验数据以及实验和模拟数据的混合方法。在混合设置中,该模型经过模拟数据训练,然后对实验数据进行了测试。结果表明,随机森林模型能够根据所有三个配置的单个密度热图预测原点分布。这对于在实际数据上应用方法特别有希望,因为通常只有有限的数据可用。

One crucial information for a pedestrian crowd simulation is the number of agents moving from an origin to a certain target. While this setup has a large impact on the simulation, it is in most setups challenging to find the number of agents that should be spawned at a source in the simulation. Often, number are chosen based on surveys and experience of modelers and event organizers. These approaches are important and useful but reach their limits when we want to perform real-time predictions. In this case, a static information about the inflow is not sufficient. Instead, we need a dynamic information that can be retrieved each time the prediction is started. Nowadays, sensor data such as video footage or GPS tracks of a crowd are often available. If we can estimate the number of pedestrians who stem from a certain origin from this sensor data, we can dynamically initialize the simulation. In this study, we use density heatmaps that can be derived from sensor data as input for a random forest regressor to predict the origin distributions. We study three different datasets: A simulated dataset, experimental data, and a hybrid approach with both experimental and simulated data. In the hybrid setup, the model is trained with simulated data and then tested on experimental data. The results demonstrate that the random forest model is able to predict the origin distribution based on a single density heatmap for all three configurations. This is especially promising for applying the approach on real data since there is often only a limited amount of data available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源