论文标题

具有嘈杂PF控制的差异方程的循环稳定

Stabilization of cycles for difference equations with a noisy PF control

论文作者

Braverman, Elena, Diblík, Josef, Rodkina, Alexandra, Šmarda, Zdeněk

论文摘要

差异方程式(例如Ricker Map),以增加参数的价值,正平衡的经验不稳定和向确定性混乱的过渡。为了实现稳定,可以应用各种方法。比例的反馈控制表明,每一步中,每一步都会减少州变量的比例减少。首先,如果$ k \ neq 1 $,则稳定周期而不是平衡。其次,该方程可以包含一个添加噪声项,描述了环境的可变性,以及与控制强度可能偏差相对应的乘法噪声。本文涉及这两个问题,这证明有可能使稳定的$ k $ cycle模糊。提出的示例包括Ricker模型以及具有无限$ F $的方程式,例如Bobwhite Quail人群模型。尽管理论结果仅证明了乘法或加性噪声的稳定合理性,但数值模拟表明,当涉及乘法和加性噪声时,可以稳定循环模糊的循环。

Difference equations, such as a Ricker map, for an increased value of the parameter, experience instability of the positive equilibrium and transition to deterministic chaos. To achieve stabilization, various methods can be applied. Proportional Feedback control suggests a proportional reduction of the state variable at every $k$th step. First, if $k \neq 1$, a cycle is stabilized rather than an equilibrium. Second, the equation can incorporate an additive noise term, describing the variability of the environment, as well as multiplicative noise corresponding to possible deviations in the control intensity. The present paper deals with both issues, it justifies a possibility of getting a stable blurred $k$-cycle. Presented examples include the Ricker model, as well as equations with unbounded $f$, such as the bobwhite quail population models. Though the theoretical results justify stabilization for either multiplicative or additive noise only, numerical simulations illustrate that a blurred cycle can be stabilized when both multiplicative and additive noises are involved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源