论文标题

迪斯科:深层神经网络的动态和不变的敏感通道混淆

DISCO: Dynamic and Invariant Sensitive Channel Obfuscation for deep neural networks

论文作者

Singh, Abhishek, Chopra, Ayush, Sharma, Vivek, Garza, Ethan, Zhang, Emily, Vepakomma, Praneeth, Raskar, Ramesh

论文摘要

最近的深度学习模型在图像分类中表现出色。尽管这些深度学习系统越来越接近实际部署,但对数据的共同假设是,它没有任何敏感信息。对于许多实际情况,尤其是在涉及个人个人信息的领域,例如医疗保健和面部识别系统等领域。我们认为,在此潜在空间中有选择地删除功能可以保护敏感信息并提供更好的隐私性权衡。因此,我们提出了迪斯科舞厅,该迪斯科舞会学习动态和数据驱动的修剪过滤器,以选择性地混淆特征空间中的敏感信息。我们提出了敏感输入\&属性的各种攻击方案,并通过定量和定性评估来证明迪斯科对最新方法的有效性。最后,我们还发布了100万个敏感表示的评估基准数据集,以鼓励对新型攻击方案进行严格的探索。

Recent deep learning models have shown remarkable performance in image classification. While these deep learning systems are getting closer to practical deployment, the common assumption made about data is that it does not carry any sensitive information. This assumption may not hold for many practical cases, especially in the domain where an individual's personal information is involved, like healthcare and facial recognition systems. We posit that selectively removing features in this latent space can protect the sensitive information and provide a better privacy-utility trade-off. Consequently, we propose DISCO which learns a dynamic and data driven pruning filter to selectively obfuscate sensitive information in the feature space. We propose diverse attack schemes for sensitive inputs \& attributes and demonstrate the effectiveness of DISCO against state-of-the-art methods through quantitative and qualitative evaluation. Finally, we also release an evaluation benchmark dataset of 1 million sensitive representations to encourage rigorous exploration of novel attack schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源