论文标题
与本地重置的简单排除过程
Simple Exclusion Processes with Local Resetting
论文作者
论文摘要
我们使用平均场近似值在具有周期性边界条件的一维晶格上研究了对称和完全不对称的简单排除过程的固定状态,并在一维晶格上进行了局部重置,这似乎是在热力学极限和动力学蒙特卡洛模拟中精确的。在这两种情况下,我们都会发现,在热力学限制中,模型表现出三种不同的机制,具体取决于重置速率与系统尺寸的尺度。该模型的完全不对称的版本具有特别丰富的行为,尤其是在中间重置方案中,重置速率随着系统大小的倒数而消失,表现出4个不同的阶段,包括相位分离。
We investigate the stationary state of Symmetric and Totally Asymmetric Simple Exclusion Processes with local resetting, on a one-dimensional lattice with periodic boundary conditions, using mean-field approximations, which appear to be exact in the thermodynamic limit, and kinetic Monte Carlo simulations. In both cases we find that in the thermodynamic limit the models exhibit three different regimes, depending on how the resetting rate scales with the system size. The Totally Asymmetric version of the model has a particularly rich behaviour, especially in an intermediate resetting regime where the resetting rate vanishes as the inverse of the system size, exhibiting 4 different phases, including phase separation.