论文标题

聚平面上霍尔态映射的表征

A characterization of holomorphic mappings on a poly-plane

论文作者

Edigarian, Armen

论文摘要

我们表明,任何函数$ f:\ mathbb {h}^n \ to \ mathbb {h} $带有$ f(z+c)= f(z)= f(z)+c $,$ z \ in \ mathbb {h}^n $,对于某些$ c> 0 $ \ {\ frac {f(tz)} {t} \} _ {t> 0} $当$ t \ to \ infty $是线性时。

We show that any function $f:\mathbb{H}^n\to\mathbb{H}$ with $f(z+c)=f(z)+c$, $z\in\mathbb{H}^n$, for some $c>0$ has a property that any limit function of a family $\{\frac{f(tz)}{t}\}_{t>0}$ when $t\to\infty$ is linear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源