论文标题
使用深神经网络对单发电子旋转读数的噪声分类
Noise-robust classification of single-shot electron spin readouts using a deep neural network
论文作者
论文摘要
通过电荷传感器(例如量子点接触和量子点)对电荷和自旋状态的单发读数是半导体旋转量子A的运行的必不可少的技术。单发读数的保真度取决于实验条件,例如信噪比,系统温度和数值参数,例如阈值。在嘈杂环境下具有鲁棒性的准确充电感测度对于开发可扩展的易于断层量子计算体系结构是必不可少的。在这项研究中,我们提出了一种新颖的单发读数分类方法,该方法使用深神经网络(DNN)对噪音具有鲁棒性。重要的是,通过使用在充电线上实验获得的电荷过渡信号的数据集调整可训练的参数,从而在任何噪声环境中自动配置DNN分类器在任何噪声环境中自动配置。此外,与在各种量子点实验中用于电荷和自旋状态测量的两种常规分类方法相比,在嘈杂的环境下,我们的DNN分类在嘈杂的环境下是可靠的。
Single-shot readout of charge and spin states by charge sensors such as quantum point contacts and quantum dots are essential technologies for the operation of semiconductor spin qubits. The fidelity of the single-shot readout depends both on experimental conditions such as signal-to-noise ratio, system temperature and numerical parameters such as threshold values. Accurate charge sensing schemes that are robust under noisy environments are indispensable for developing a scalable fault-tolerant quantum computation architecture. In this study, we present a novel single-shot readout classification method that is robust to noises using a deep neural network (DNN). Importantly, the DNN classifier is automatically configured for spin-up and spin-down signals in any noise environment by tuning the trainable parameters using the datasets of charge transition signals experimentally obtained at a charging line. Moreover, we verify that our DNN classification is robust under noisy environment in comparison to the two conventional classification methods used for charge and spin state measurements in various quantum dot experiments.