论文标题
激光生成的超强度伽马射线和中子源的新见解,用于核应用和科学
New insights in laser-generated ultra-intense gamma-ray and neutron sources for nuclear applications and science
论文作者
论文摘要
在许多研究领域,例如核,原子科学以及医学和生物物理应用中,超强的MEV光子和中子光束都是必不可少的工具。对于针对实验室调查的天体物理应用,需要超过10 $^{21} $ n/(cm $^2 $ s)的中子通量。这种超高通量与现有的常规反应器和基于加速器的设施无法实现。目前讨论的用于生成高频率中子光束的概念是基于以> 10 $^{23} $ w/cm $ $^2 $强度运行的超高动力多折线激光。在这里,我们提出了一个新颖的有效概念,用于基于增强的相对论激光相互作用的直接激光加速电子的生成$γ$和中子束,并在10 $^{19} $ w/cm $^{2} $ intentia in the Longcale接近临界密度等离子体上产生了相对论激光相互作用。在激光驱动的超注良好指导的多MEV光束的激光驱动的新实验见解中,每次拍摄> 10 $^{12} $ pH/sr和具有> 6 $ \ times $ 10 $^{10} $中子的超高强度中子源。超过1.4 \%的激光转换效率超过10 MeV,并且记录了0.05 \%激光至中子转换效率,已经记录在中等相对论的激光强度和PS脉冲持续时间。这种方法有望强烈提高用于ICF研究的现有KJ PW激光系统的诊断潜力。
Ultra-intense MeV photon and neutron beams are indispensable tools in many research fields such as nuclear, atomic and material science as well as in medical and biophysical applications. For astrophysical applications aimed for laboratory investigations, neutron fluxes in excess of 10$^{21}$ n/(cm$^2$ s) are required. Such ultra-high fluxes are unattainable with existing conventional reactor- and accelerator-based facilities. Currently discussed concepts for generating high-flux neutron beams are based on ultra-high-power multi-petawatt lasers operating at >10$^{23}$ W/cm$^2$ intensities. Here, we present a novel efficient concept for generating $γ$ and neutron beams based on enhanced generation of direct laser accelerated electrons in relativistic laser interactions with a long-scale near critical density plasma at 10$^{19}$ W/cm$^{2}$ intensity. New experimental insights in the laser-driven generation of ultra-intense well-directed multi-MeV beams of photons with >10$^{12}$ ph/sr and a ultra-high intense neutron source with >6$\times$10$^{10}$ neutrons per shot are presented. More than 1.4\% laser-to-gamma conversion efficiency above 10 MeV and 0.05\% laser-to-neutron conversion efficiency were recorded, already at moderate relativistic laser intensities and ps pulse duration. This approach promises a strong boost of the diagnostic potential of existing kJ PW laser systems used for ICF research.