论文标题

混乱的模型投影基于某种同态加密 - 安全智能城市上的密码系统,库和应用程序

Confused Modulo Projection based Somewhat Homomorphic Encryption -- Cryptosystem, Library and Applications on Secure Smart Cities

论文作者

Jin, Xin, Zhang, Hongyu, Li, Xiaodong, Yu, Haoyang, Liu, Beisheng, Xie, Shujiang, Singh, Amit Kumar, Li, Yujie

论文摘要

随着云计算的开发,大量视觉媒体数据的存储和处理已逐渐转移到云服务器上。例如,如果智能视频监视系统无法在本地处理大量数据,则将这些数据上传到云。因此,如何在不暴露原始数据的情况下处理云中的数据已成为一个重要的研究主题。我们基于混淆的Modulo投影定理(名为CMP-SWHE)提出了某种同态加密加密系统的单行版本,该版本允许服务器完成盲目数据处理而无需\ emph {see}}用户数据的有效信息。在客户端,原始数据是通过放大,随机化和设置令人困惑的冗余来加密的。在服务器端的加密数据上操作相当于在原始数据上操作。作为扩展,我们基于批处理技术设计并实施了加速版本的盲目计算方案,以提高效率。为了使该算法易于使用,我们还根据CMP-SWHE设计并实施了一个有效的通用盲目计算库。我们将此库应用于前景提取,光流跟踪和对象检测,并具有令人满意的结果,这有助于建造智能城市。我们还讨论了如何将算法扩展到深度学习应用程序。与其他同态加密密码系统和库相比,结果表明我们的方法在计算效率方面具有明显的优势。尽管我们的算法有一些微小的错误($ 10^{-6} $)当数据太大时,它非常有效且实用,特别适合盲目图像和视频处理。

With the development of cloud computing, the storage and processing of massive visual media data has gradually transferred to the cloud server. For example, if the intelligent video monitoring system cannot process a large amount of data locally, the data will be uploaded to the cloud. Therefore, how to process data in the cloud without exposing the original data has become an important research topic. We propose a single-server version of somewhat homomorphic encryption cryptosystem based on confused modulo projection theorem named CMP-SWHE, which allows the server to complete blind data processing without \emph{seeing} the effective information of user data. On the client side, the original data is encrypted by amplification, randomization, and setting confusing redundancy. Operating on the encrypted data on the server side is equivalent to operating on the original data. As an extension, we designed and implemented a blind computing scheme of accelerated version based on batch processing technology to improve efficiency. To make this algorithm easy to use, we also designed and implemented an efficient general blind computing library based on CMP-SWHE. We have applied this library to foreground extraction, optical flow tracking and object detection with satisfactory results, which are helpful for building smart cities. We also discuss how to extend the algorithm to deep learning applications. Compared with other homomorphic encryption cryptosystems and libraries, the results show that our method has obvious advantages in computing efficiency. Although our algorithm has some tiny errors ($10^{-6}$) when the data is too large, it is very efficient and practical, especially suitable for blind image and video processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源