论文标题

顶级$ k $排名贝叶斯优化

Top-$k$ Ranking Bayesian Optimization

论文作者

Nguyen, Quoc Phong, Tay, Sebastian, Low, Bryan Kian Hsiang, Jaillet, Patrick

论文摘要

本文介绍了一种新颖的方法,用于顶级$ k $排名贝叶斯优化($ K $排名BO),这是对优先BO的实用而重要的概括,以处理顶级$ K $排名和TIE/TIE/冷漠观察。我们首先设计了一个替代模型,该模型不仅能够迎合上述观察结果,而且还得到了经典的随机效用模型的支持。另一个同样重要的贡献是在BO中引入了首个信息理论获取函数,其优先观察称为多项式预测熵搜索(MPE),该搜索(MPES)在处理这些观察结果方面具有灵活性,并针对共同查询的所有输入进行了优化。与现有的采集功能相比,MPE具有较高的性能,这些功能一次贪婪地选择了查询的输入。我们使用多个合成基准功能,CIFAR- $ 10 $数据集和寿司偏好数据集从经验上评估MPE的性能。

This paper presents a novel approach to top-$k$ ranking Bayesian optimization (top-$k$ ranking BO) which is a practical and significant generalization of preferential BO to handle top-$k$ ranking and tie/indifference observations. We first design a surrogate model that is not only capable of catering to the above observations, but is also supported by a classic random utility model. Another equally important contribution is the introduction of the first information-theoretic acquisition function in BO with preferential observation called multinomial predictive entropy search (MPES) which is flexible in handling these observations and optimized for all inputs of a query jointly. MPES possesses superior performance compared with existing acquisition functions that select the inputs of a query one at a time greedily. We empirically evaluate the performance of MPES using several synthetic benchmark functions, CIFAR-$10$ dataset, and SUSHI preference dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源