论文标题

患者特异性气道图像分割及其评估的GPU加速度

GPU acceleration of a patient-specific airway image segmentation and its assessment

论文作者

Chang, Yu-Wei, Sheu, Tony W. H.

论文摘要

图像分割在计算机视觉,对象检测,流量控制和视频监视中起着重要作用。通常,这是医学图像处理中特定器官的3D重建的关键步骤,该器官揭示了器官,肿瘤和神经的详细层析成像,从而有助于提高手术病理的质量。但是,其中可能有很高的计算要求。随着GPU的出现,可以模拟更复杂和现实的模型,但是这些设施的部署也需要大量资本。结果,如何充分利用这些计算资源对于GPU计算至关重要。这项研究讨论了3D气道重建的图像分割,确定了计算密集型任务,并平行于图像分割的算法,以便根据GPU与CPU的基准比,以获得理论上的最大速度。涉及五个步骤,是图像采集,预处理,分割,重建和对象识别。值得注意的是,分段时需要85%的时间。这项研究成功地加速了3D气道重建的图像分割,通过优化记忆使用,网格和块设置以及多个GPU通信,从而在两个GPU上获得了61.8的总速度(NVIDIA K40)。

Image segmentation plays an important role in computer vision, object detection, traffic control, and video surveillance. Typically, it is a critical step in the 3D reconstruction of a specific organ in medical image processing which unveils the detailed tomography of organ, tumor, and nerve, and thus helping to improve the quality of surgical pathology. However, there may be high computational requirements in it. With the advent of GPUs, more complex and realistic models can be simulated, but the deployment of these facilities also requires a huge amount of capital. As a consequence, how to make good use of these computational resource is essential to GPU computing. This study discusses the image segmentation of 3D airway reconstruction, identifies the computing-intensive task, and parallelizes the algorithm of image segmentation in order to obtain theoretical maximum speedup in terms of the benchmark ratio of GPU to CPU. There are five steps involved, which are the image acquisition, pre-processing, segmentation, reconstruction, and object recognition. It is worth to note that it takes 85\% of time on segmentation. This study successfully accelerates the image segmentation of 3D airway reconstruction by optimizing the memory usage, grid and block setting and multiple GPUs communication, thereby gaining a total speedup of 61.8 on two GPUs (Nvidia K40).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源