论文标题
矿物质大气从热岩石外球星球的流体动力逃生。 I.模型描述
Hydrodynamic Escape of Mineral Atmosphere from Hot Rocky Exoplanet. I. Model Description
论文作者
论文摘要
最近的系外行星统计表明,光蒸发对近距离质量行星的质量和大量组成有很大的影响。虽然有许多研究涉及富含氢或水丰富的气氛的光蒸发,但尚未进行有关岩石蒸气气氛(或矿物质气氛)的详细研究。在这里,我们开发了一个由Na,Mg,Mg,O,Si,其离子和电子组成的UV辐射矿物气氛的新的1-D流体动力模型,包括分子扩散,热导导,光学/热化学,X-射线和UV加热,以及辐射线冷却(即,呈辐射线冷却性)。本文的重点是描述我们的方法论,但提出了一些新发现。我们的流体动力模拟表明,来自宿主星的几乎所有事件的X射线和UV能量都被冷却剂气体物种的辐射发射(例如Na,mg,mg $^+$,si $^{2+} $,na $^{3+} $} $^{3+} $ and si $^{3+} $转化为和丢失。对于年轻的太阳能型恒星周围绕着0.02〜Au旋转的地球大小的行星,我们发现X射线和UV加热效率高达$ 1 \ $ 1 \ times 10^{ - 3} $,相当于0.3〜 $ \ $ \ \ $ \ mearth $/gyr,质量损失的质量损失率简单地整合了所有方向。由于如此有效的冷却,矿物质大气在热岩石系外行星上的光蒸发量不足以巨大,无法对行星质量和散装组成产生很大的影响。这表明,在高紫外环境中,尺寸大于地球半径大的高密度系外行星在高度半径上存活。
Recent exoplanet statistics indicate that photo-evaporation has a great impact on the mass and bulk composition of close-in low-mass planets. While there are many studies addressing photo-evaporation of hydrogen-rich or water-rich atmospheres, no detailed investigation regarding rocky vapor atmospheres (or mineral atmospheres) has been conducted. Here, we develop a new 1-D hydrodynamic model of the UV-irradiated mineral atmosphere composed of Na, Mg, O, Si, their ions and electrons, includin molecular diffusion, thermal conduction, photo-/thermo-chemistry, X--ray and UV heating, and radiative line cooling (i.e., the effects of the optical thickness and non-LTE). The focus of this paper is on describing our methodology but presents some new findings. Our hydrodynamic simulations demonstrate that almost all of the incident X-ray and UV energy from the host-star is converted into and lost by the radiative emission of the coolant gas species such as Na, Mg, Mg$^+$, Si$^{2+}$, Na$^{3+}$ and Si$^{3+}$. For an Earth-size planet orbiting 0.02~AU around a young solar-type star, we find that the X-ray and UV heating efficiency is as small as $1 \times 10^{-3}$, which corresponds to 0.3~$\Mearth$/Gyr of the mass loss rate simply integrated over all the directions. Because of such efficient cooling, the photo-evaporation of the mineral atmosphere on hot rocky exoplanets with masses of $1\Mearth$ is not massive enough to exert a great influence on the planetary mass and bulk composition. This suggests that close-in high-density exoplanets with sizes larger than the Earth radius survive in the high-UV environments.