论文标题
deift-Zhou最陡峭下降的零八角形
Null octagon from Deift-Zhou steepest descent
论文作者
论文摘要
最大超对称的阳米尔斯理论中的一类特殊的四点相关函数由弗雷德·霍尔姆(Fredholm)的正方形赋予广义贝塞尔内核的范围。在本说明中,我们根据二维Riemann-Hilbert问题重新表达其对数衍生物。我们利用Deift-Zhou最陡峭的下降来解决后者的零限度。我们在霍夫特耦合中重现了精确的八角形异常尺寸,并将其新颖的配方作为非线性准经典阶段的卷积,而无限化学势极限则具有费米分布。
A special class of four-point correlation functions in the maximally supersymmetric Yang-Mills theory is given by the square of the Fredholm determinant of a generalized Bessel kernel. In this note, we re-express its logarithmic derivatives in terms of a two-dimensional Riemann-Hilbert problem. We solve the latter in the null limit making use of the Deift-Zhou steepest descent. We reproduce the exact octagonal anomalous dimension in 't Hooft coupling and provide its novel formulation as a convolution of the non-linear quasiclassical phase with the Fermi distribution in the limit of the infinite chemical potential.