论文标题

使用胶体沉积动员多孔介质的不混溶液

Using colloidal deposition to mobilize immiscible fluids from porous media

论文作者

Schneider, Joanna, Priestley, Rodney D., Datta, Sujit S.

论文摘要

胶体颗粒有望动员和去除多孔培养基中的不混溶液,对关键能量和水的应用产生影响。大多数研究专注于使用可以定位在不混溶的流体界面上的粒子来实现此目标。因此,研究人员通常寻求优化颗粒的表面活性,以及​​他们自由地穿过孔隙空间,最小沉积到周围固体基质上的能力。在这里,我们证明沉积可以令人惊讶地促进从多孔培养基中移动被困的流体,而无需任何表面活性。使用共聚焦显微镜,我们直接在透明的三维(3D)多孔培养基中直接可视化胶体颗粒和捕获的不混溶液。我们发现,随着非表面活性颗粒沉积在固体基质上,动员量增加了量的被困流体。我们通过分析沉积程度以及毛孔量表的几何形状来阐明潜在的物理学:沉积增加了捕获液滴的粘应力,克服了使它们被捕获的毛细血管的影响。鉴于被困流体的初始分布,该分析使我们能够预测通过胶体沉积动员的流体程度。综上所述,我们的工作揭示了一种新的方式,可以利用胶体从多孔培养基中动员被困的液体。

Colloidal particles hold promise for mobilizing and removing trapped immiscible fluids from porous media, with implications for key energy and water applications. Most studies focus on accomplishing this goal using particles that can localize at the immiscible fluid interface. Therefore, researchers typically seek to optimize the surface activity of particles, as well as their ability to freely move through a pore space with minimal deposition onto the surrounding solid matrix. Here, we demonstrate that deposition can, surprisingly, promote mobilization of a trapped fluid from a porous medium without requiring any surface activity. Using confocal microscopy, we directly visualize both colloidal particles and trapped immiscible fluid within a transparent, three-dimensional (3D) porous medium. We find that as non-surface active particles deposit on the solid matrix, increasing amounts of trapped fluid become mobilized. We unravel the underlying physics by analyzing the extent of deposition, as well as the geometry of trapped fluid droplets, at the pore scale: deposition increases the viscous stresses on trapped droplets, overcoming the influence of capillarity that keeps them trapped. Given an initial distribution of trapped fluid, this analysis enables us to predict the extent of fluid mobilized through colloidal deposition. Taken together, our work reveals a new way by which colloids can be harnessed to mobilize trapped fluid from a porous medium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源