论文标题

现实世界超级分辨率的频率一致适应

Frequency Consistent Adaptation for Real World Super Resolution

论文作者

Ji, Xiaozhong, Tao, Guangpin, Cao, Yun, Tai, Ying, Lu, Tong, Wang, Chengjie, Li, Jilin, Huang, Feiyue

论文摘要

最近基于深度学习的超分辨率(SR)方法在已知降解的图像上取得了显着的性能。但是,这些方法在现实世界中总是失败,因为理想降解后的低分辨率(LR)图像(例如,双曲线下采样)偏离了真实的源域。可以清楚地观察到LR图像和现实世界图像之间的域间隙,这激发了我们解释缩小由不正确降解引起的不希望的差距。从这个角度来看,我们设计了一种新颖的频率一致适应(FCA),该适应性确保在将现有SR方法应用于真实场景时确保频域的一致性。我们从无监督的图像中估算降解核并生成相应的LR图像。为了为内核估计提供有用的梯度信息,我们通过区分不同尺度上图像的频率密度来提出频率密度比较器(FDC)。基于域一致的LR-HR对,我们训练易于实施的卷积神经网络(CNN)SR模型。广泛的实验表明,提出的FCA在现实世界中提高了SR模型的性能,从而通过高保真和合理的感知来实现最先进的结果,从而为现实世界中的SR应用提供了新颖的有效框架。

Recent deep-learning based Super-Resolution (SR) methods have achieved remarkable performance on images with known degradation. However, these methods always fail in real-world scene, since the Low-Resolution (LR) images after the ideal degradation (e.g., bicubic down-sampling) deviate from real source domain. The domain gap between the LR images and the real-world images can be observed clearly on frequency density, which inspires us to explictly narrow the undesired gap caused by incorrect degradation. From this point of view, we design a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying existing SR methods to the real scene. We estimate degradation kernels from unsupervised images and generate the corresponding LR images. To provide useful gradient information for kernel estimation, we propose Frequency Density Comparator (FDC) by distinguishing the frequency density of images on different scales. Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models. Extensive experiments show that the proposed FCA improves the performance of the SR model under real-world setting achieving state-of-the-art results with high fidelity and plausible perception, thus providing a novel effective framework for real-world SR application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源