论文标题
使用病理学的特征来处理不确定性:初级保健数据中的机会开发高风险癌症生存方法
Handling uncertainty using features from pathology: opportunities in primary care data for developing high risk cancer survival methods
论文作者
论文摘要
2019年,有超过144万名澳大利亚人被诊断出患有癌症。大多数将首先以症状为症状,即使是为了筛查计划的癌症。由于癌症症状的非特异性性质及其患病率低,因此在初级保健中诊断癌症是有挑战性的。了解从初级保健数据中了解患者病史中癌症症状的流行病学和表现模式对于改善早期发现和癌症结果可能很重要。由于过去有关患者的医疗数据可能不完整,不规则或缺失,因此在尝试使用患者的病史进行任何新诊断时会带来其他挑战。我们的研究旨在调查GP可用的患者病理病史的机会,最初侧重于经常有序的全血数量中的结果,以确定与未来的高风险癌症预后和治疗结果的相关性。我们调查了过去的病理测试结果如何导致可用于预测癌症预后的特征,重点是在2年内有可能无法在癌症中幸存下来的患者。尽管该方法可以应用于病历中的其他类型的癌症和其他数据,但最初的工作重点是肺癌患者。我们的发现表明,即使在患者病史不完整或模糊的情况下,血液学措施也可用于产生与预测癌症风险和生存相关的特征。结果强烈表明,将病理测试数据的使用用于潜在的高危癌症诊断,并且更多地利用其他病理指标或其他初级保健数据集用于类似目的。
More than 144 000 Australians were diagnosed with cancer in 2019. The majority will first present to their GP symptomatically, even for cancer for which screening programs exist. Diagnosing cancer in primary care is challenging due to the non-specific nature of cancer symptoms and its low prevalence. Understanding the epidemiology of cancer symptoms and patterns of presentation in patient's medical history from primary care data could be important to improve earlier detection and cancer outcomes. As past medical data about a patient can be incomplete, irregular or missing, this creates additional challenges when attempting to use the patient's history for any new diagnosis. Our research aims to investigate the opportunities in a patient's pathology history available to a GP, initially focused on the results within the frequently ordered full blood count to determine relevance to a future high-risk cancer prognosis, and treatment outcome. We investigated how past pathology test results can lead to deriving features that can be used to predict cancer outcomes, with emphasis on patients at risk of not surviving the cancer within 2-year period. This initial work focuses on patients with lung cancer, although the methodology can be applied to other types of cancer and other data within the medical record. Our findings indicate that even in cases of incomplete or obscure patient history, hematological measures can be useful in generating features relevant for predicting cancer risk and survival. The results strongly indicate to add the use of pathology test data for potential high-risk cancer diagnosis, and the utilize additional pathology metrics or other primary care datasets even more for similar purposes.