论文标题

在动量空间中的共形部分波

Conformal partial waves in momentum space

论文作者

Gillioz, Marc

论文摘要

四点相关函数分解为共形部分波是保形场理论研究中的核心工具。我们在Minkowski动量空间中计算标量运算符的这些部分波,并找到有效的封闭形式的结果在任意时空尺寸$ d \ geq 3 $(包括非Integer $ d $)中。每个共形部分波均表示为普通旋转部分波的总和,该总和的系数分解为顶点函数的产物,该函数仅依赖于传入的,即将卸下的运算符的共形数据。作为一个简单的例子,我们将此共形部分波分解应用于$ d = 4 $ dimensions中的标量框。

The decomposition of 4-point correlation functions into conformal partial waves is a central tool in the study of conformal field theory. We compute these partial waves for scalar operators in Minkowski momentum space, and find a closed-form result valid in arbitrary space-time dimension $d \geq 3$ (including non-integer $d$). Each conformal partial wave is expressed as a sum over ordinary spin partial waves, and the coefficients of this sum factorize into a product of vertex functions that only depend on the conformal data of the incoming, respectively outgoing operators. As a simple example, we apply this conformal partial wave decomposition to the scalar box integral in $d = 4$ dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源