论文标题
跨度高度高度树的狄拉克型条件
Dirac-type conditions for spanning bounded-degree hypertrees
论文作者
论文摘要
我们证明,对于固定的$ k $,每$ n $顶点上的每一个$ k $均匀的超图和至少$ n/2+o(n)$的最低代码,包含每个跨越$ k $的每个跨度$ k $ - 有界顶点学位的树,作为子\ - 段。这概括了Komlós,Sárközy和Szemerédi的众所周知的结果。我们的结果在渐近上是敏锐的。我们还证明了我们的结果扩展到满足某些弱的准级别条件的超图。
We prove that for fixed $k$, every $k$-uniform hypergraph on $n$ vertices and of minimum codegree at least $n/2+o(n)$ contains every spanning tight $k$-tree of bounded vertex degree as a sub\-graph. This generalises a well-known result of Komlós, Sárközy and Szemerédi for graphs. Our result is asymptotically sharp. We also prove an extension of our result to hypergraphs that satisfy some weak quasirandomness conditions.