论文标题

通过离散的傅立叶变换间隔传播

Interval propagation through the discrete Fourier transform

论文作者

De Angelis, Marco, Behrendt, Marco, Comerford, Liam, Zhang, Yuanjin, Beer, Michael

论文摘要

我们提出了一种通过离散的傅立叶变换进行间隔的正向传播的算法。当计算真实和复杂的估值序列的傅立叶变换幅度时,该算法会产生最佳的边界。我们表明,通过对间隔域的所有可能角度进行详尽的检查,可以实现计算振幅的确切边界。但是,由于角数的数量随间隔的数量呈指数增加,因此对于大间隔信号而言,这种方法是不可行的。我们提供了一种不需要如此详尽的搜索的算法,并表明只有从傅立叶系列的每个项的端点凸面中才能获得最佳的界限。由于凸面始终被紧密地刻在不同的严格边界框中,因此我们得出结论,确保获得的边界可以封闭真实值。

We present an algorithm for the forward propagation of intervals through the discrete Fourier transform. The algorithm yields best-possible bounds when computing the amplitude of the Fourier transform for real and complex valued sequences. We show that computing the exact bounds of the amplitude can be achieved with an exhaustive examination of all possible corners of the interval domain. However, because the number of corners increases exponentially with the number of intervals, such method is infeasible for large interval signals. We provide an algorithm that does not need such an exhaustive search, and show that the best possible bounds can be obtained propagating complex pairs only from the convex hull of endpoints at each term of the Fourier series. Because the convex hull is always tightly inscribed in the respective rigorous bounding box resulting from interval arithmetic, we conclude that the obtained bounds are guaranteed to enclose the true values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源