论文标题
$ z \ sim3.3 $的星形星系中的灰尘,气体和金属含量与阿尔玛和近红外光谱揭示
Dust, gas, and metal content in star-forming galaxies at $z\sim3.3$ revealed with ALMA and Near-IR spectroscopy
论文作者
论文摘要
我们用Atacama大毫米/亚毫米阵列(ALMA)进行了亚毫米观测,该星系是$ z \ sim3.3 $的,以前已经测量过其气相金属性。我们通过探测其气体质量分数和气相金属度来研究星系的灰尘和气体含量,并研究星系如何与其圆形/乳清层间培养基相互作用。单带尘埃连续发射块状尘埃质量以及气相金属性与气体与盘状质量比之间的关系用于估计气体质量。估计的气体质量分数和耗尽时间标准分别为$ f _ {\ rm GAS} = $ 0.20-0.75和$ t _ {\ rm dep} = $ 0.09-1.55 gyr。尽管星系似乎在$ z \ sim3.3 $上的星形成主序列周围分布紧密分布,但两个量都表明,在固定恒星质量上的扩展比缩放关系中预期的比预期的更大,这表明明显在主序列上显然是星形形成星系中的基本气体多样性。比较$ z \ sim3.3 $的星形星系之间的气体质量分数和气相金属性,在较低的红移,$ z \ sim3.3 $的星形星系似乎比具有类似气体质量分数的本地星系更具金属贫困。使用气体调节器模型来解释这种偏移,我们发现它可以通过更高的质量负载因子来解释,这表明在较早的宇宙时间,流出中的质量负载因子增加。
We conducted sub-millimeter observations with the Atacama Large Millimeter/sub-millimeter Array (ALMA) of star-forming galaxies at $z\sim3.3$, whose gas-phase metallicities have been previously measured. We investigate the dust and gas contents of the galaxies at $z\sim3.3$ and study how galaxies are interacting with their circumgalactic/intergalactic medium at this epoch by probing their gas mass fractions and gas-phase metallicities. Single-band dust continuum emission tracing dust mass and the relation between the gas-phase metallicity and gas-to-dust mass ratio are used to estimate the gas masses. The estimated gas mass fractions and depletion timescales are $f_{\rm gas}=$ 0.20-0.75 and $t_{\rm dep}=$ 0.09-1.55 Gyr, respectively. Although the galaxies appear to tightly distribute around the star-forming main sequence at $z\sim3.3$, both quantities show a wider spread at a fixed stellar mass than expected from the scaling relation, suggesting a large diversity of fundamental gas properties among star-forming galaxies apparently on the main sequence. Comparing gas mass fraction and gas-phase metallicity between the star-forming galaxies at $z\sim3.3$ and at lower redshifts, star-forming galaxies at $z\sim3.3$ appear to be more metal-poor than local galaxies with similar gas mass fractions. Using the gas regulator model to interpret this offset, we find that it can be explained by a higher mass-loading factor, suggesting that the mass-loading factor in outflows increases at earlier cosmic times.