论文标题

单原子Fe锚定的多孔碳,具有丰富的石墨氮作为氧气还原反应的电催化剂和Zn-air电池

Single Atomic Fe anchored Porous Carbon with Rich Graphitic Nitrogen as Electrocatalysts for Oxygen Reduction Reaction and Zn-Air Batteries

论文作者

Hui, Kwun Nam

论文摘要

由于高理论能量密度及其性能依赖于阴极催化剂的氧气减少反应(ORR)性能,因此Zn-Air Battery(ZAB)以新一代的能源存储装置而区分了自己。由于Fe原子的最大利用率,单个原子FE锚定的N掺杂碳(FE-N-C)已成为有前途的ORR电催化剂。但是,要获得高速和稳定的Fe-N-C仍然具有挑战性。在这里提出了一种新颖而便捷的方法,用于制造FE-N-C催化剂(PC-FE-50),其出色的ORR性能优于商业铂催化剂和铁phalocyanine(FEPC)。当与商业OER催化剂(RUO2)混合并用作ZAB的空气阴极时,获得了809 W H KG-1的高能量密度,高功率密度为128 MW CM-2,并且获得了稳定的自行车可再充电性能。通过密度功能理论计算,我们揭示了碳中丰富的n掺杂剂(7.47 at%)在具有两种最常见构型的Fenx部分上起着重要作用(FEN4C10(FEN4C10),称为D1; FEN4C12,称为D2)。调整了FE中心的ORR中间体的结合能。通过比较可能的结构和FEPC分子的活性,我们发现PC-FE-50催化剂中现实的活性位点可以是结合相邻n原子的D2,而不是D1,而不是D1,这是报告的FE-N-C催化剂中广泛认识的活性结构。

Zn-air battery (ZAB) has distinguished itself as new generation of energy storage device due to the high theoretical energy density and its performance relies on the oxygen reduction reaction (ORR) performance of the cathode catalysts. Single atomic Fe anchored N-doped carbon (Fe-N-C) has emerged as a promising ORR electrocatalyst because of the maximum utilization of Fe atoms. However, to obtain high-rate and stable Fe-N-C remains challenging. A novel and facile approach to fabricate Fe-N-C catalyst (PC-Fe-50) with outstanding ORR performance superior to commercial platinum catalyst and iron phthalocyanine (FePc), is proposed here. When mixed with commercial OER catalyst (RuO2) and employed as the air cathode in ZAB, a high energy density of 809 W h kg-1, high power density of 128 mW cm-2, and stable cycling rechargeable performance are obtained. By means of density functional theory calculations, we revealed that the abundant N dopants (7.47 at%) in carbon play significant roles on FeNx moieties with two most common configurations (FeN4C10, denoted as D1; FeN4C12, denoted as D2). The binding energies of ORR intermediates on Fe center are adjusted. By comparing the activity of possible structures and FePc molecule, we find the realistic active sites in PC-Fe-50 catalyst may be the D2 combining the adjacent N atoms, instead of D1, the widely recognized active structure in reported Fe-N-C catalysts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源