论文标题
最小化信息年龄的费率与错误之间的战斗
Battle between Rate and Error in Minimizing Age of Information
论文作者
论文摘要
在本文中,我们考虑了一个状态更新系统,其中更新数据包通过无线介质发送到目的地,该介质允许多个速率,其中较高的速率也自然地对应于更高的误差概率。数据新鲜度是使用信息时代来衡量的,该信息定义为目的地最近更新的年龄。以较高速率传输的数据包将遇到较短的延迟和更高的误差概率。因此,传输速率的选择会影响目的地的年龄。在本文中,我们设计了一个低复杂性调度程序,该调度程序可以在每个传输时期使用两个不同的传输率和误差概率对之间。这个问题可以作为马尔可夫决策过程。我们表明,存在一个最佳年龄段的阈值型政策。更重要的是,我们表明,基于系统参数值,目标函数是阈值中的准串门或不重新调查的。这使我们能够设计一个\ emph {低复杂算法},以最大程度地减少年龄。这些结果揭示了一个有趣的现象:虽然以最小平均延迟选择速率是延迟最佳的,但这并不一定会使年龄最小化。
In this paper, we consider a status update system, in which update packets are sent to the destination via a wireless medium that allows for multiple rates, where a higher rate also naturally corresponds to a higher error probability. The data freshness is measured using age of information, which is defined as the age of the recent update at the destination. A packet that is transmitted with a higher rate, will encounter a shorter delay and a higher error probability. Thus, the choice of the transmission rate affects the age at the destination. In this paper, we design a low-complexity scheduler that selects between two different transmission rate and error probability pairs to be used at each transmission epoch. This problem can be cast as a Markov Decision Process. We show that there exists a threshold-type policy that is age-optimal. More importantly, we show that the objective function is quasi-convex or non-decreasing in the threshold, based on to the system parameters values. This enables us to devise a \emph{low-complexity algorithm} to minimize the age. These results reveal an interesting phenomenon: While choosing the rate with minimum mean delay is delay-optimal, this does not necessarily minimize the age.