论文标题

隐藏部门纠缠的统计耦合常数

Statistical coupling constants from hidden sector entanglement

论文作者

Balasubramanian, Vijay, Heckman, Jonathan J., Lipeles, Elliot, Turner, Andrew P.

论文摘要

字符串理论预测,自然的耦合来自动态场。所有已知的弦乐粒子物理模型还具有广泛的额外扇区。通常认为这种模量被冷冻到背景值,并且几乎可以完全解耦。对除可见扇区以外的所有部门进行部分轨迹,将可见的扇形处于混合状态,并从量子统计集合中绘制了耦合常数。可见和额外部门之间这种纠缠的可观察结果是,报告的耦合值似乎具有不可还原差异。将这种差异与实验数据中的拟合一起包括在内,提供了一个重要的附加参数,可用于将耦合视为固定参数视为耦合的情况。因此,实验的能量范围与精度之间存在相互作用,这使得新物理学的扩展范围。

String theory predicts that the couplings of Nature descend from dynamical fields. All known string-motivated particle physics models also come with a wide range of possible extra sectors. It is common to posit that such moduli are frozen to a background value, and that extra sectors can be nearly completely decoupled. Performing a partial trace over all sectors other than the visible sector generically puts the visible sector in a mixed state, with coupling constants drawn from a quantum statistical ensemble. An observable consequence of this entanglement between visible and extra sectors is that the reported values of couplings will appear to have an irreducible variance. Including this variance in fits to experimental data gives an important additional parameter that can be used to distinguish this scenario from the case where couplings are treated as fixed parameters. There is a consequent interplay between energy range and precision of an experiment that allows an extended reach for new physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源