论文标题

冻结在超相关制度中产生的暗物质

Freeze-in produced dark matter in the ultra-relativistic regime

论文作者

Biondini, Simone, Ghiglieri, Jacopo

论文摘要

当暗物质颗粒仅与早期宇宙中的血浆成分相互作用时,它们永远不会达到热平衡。与冻结机制相反,在$ t \ ll m $下确定暗物质的丰度,微弱的相互作用状态的能量密度会累积并增加了$ t \ gtrsim m $。在这项工作中,我们解决了高温方案对暗物质生产率的影响,因为黑物质生产速率是深色和标准模型颗粒是超相关且几乎像光一样的。在这种情况下,发现多个软散射以及$ 2 \至2美元的流程可为生产率做出很大的贡献。在我们在这项工作中考虑的模型中,即Majorana fermion暗物质质量$ m $,并伴随着较重的标量 - $ - $ $ $ $ $ - $ - $ - $ - $ - $ - $ - $ - 与可见的扇区相互作用,当忽略高磁性动力学时,能量密度可能会大大低估。我们发现,总体效率$ 1 \ leftrightArrow 2 $和2美元\ to2 $高温生产贡献$ \ Mathcal {o}(10)$(20 \%)的校正,以$ΔM /m = 0.1 $($最 /m = 10 $)的生产率,以$ΔM= 0.1 $($Δ我们还评估了在超wimp机制的背景下,界面影响对较重标量的延迟歼灭的影响。

When dark matter particles only feebly interact with plasma constituents in the early universe, they never reach thermal equilibrium. As opposed to the freeze-out mechanism, where the dark matter abundance is determined at $T \ll M$, the energy density of a feebly interacting state builds up and increases over $T \gtrsim M$. In this work, we address the impact of the high-temperature regime on the dark matter production rate, where the dark and Standard Model particles are ultra-relativistic and nearly light-like. In this setting, multiple soft scatterings, as well as $2 \to 2$ processes, are found to give a large contribution to the production rate. Within the model we consider in this work, namely a Majorana fermion dark matter of mass $M$ accompanied by a heavier scalar $-$ with mass splitting $ΔM$ $-$ which shares interactions with the visible sector, the energy density can be dramatically underestimated when neglecting the high-temperature dynamics. We find that the overall effective $1 \leftrightarrow 2$ and $2 \to2$ high-temperature contributions to dark-matter production give $\mathcal{O}(10)$ (20\%) corrections for $ΔM /M =0.1$ ($ΔM /M =10$) to the Born production rate with in-vacuum masses and matrix elements. We also assess the impact of bound-state effects on the late-time annihilations of the heavier scalar, in the context of the super-WIMP mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源