论文标题

用深度学习量化高红移星系的非参数结构

Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning

论文作者

Tohill, C., Ferreira, L., Conselice, C. J., Bamford, S. P., Ferrari, F.

论文摘要

在高红移时,由于观察局限性和早期宇宙中星系形态的种类,测量星系结构可能具有挑战性。因此,由于其模型独立的性质既是直接的计算过程,诸如CAS系统之类的非参数测量已成为重要的工具。最近,卷积神经网络(CNN)已被证明是在图像分析中擅长的,并开始取代传统的视觉形态和基于模型的结构参数的测量。在这项工作中,我们通过扩展CNN来迈出进一步的一步,以测量众所周知的非参数结构量:浓度($ c $)和不对称($ a $)。我们使用贝叶斯超参数优化选择合适的网络体系结构,从$ \ sim 150,000 $ a的单个图像中预测CNN,以预测$ c $和$ a $。与标准算法相比,我们最终的网络可以准确地重现测量结果。此外,使用模拟图像,我们表明我们的网络比低信噪比下的标准算法更稳定。尽管这两种方法都有与红移相似的系统偏见,但这些方法仍然很小,至$ z \ sim 7 $。经过培训后,我们网络的测量值$> 10^3 $倍,比以前的方法快。因此,我们的方法能够重现非参数形态的标准度量,并显示出使用神经网络以更少的时间提供卓越结果的潜力。这对于充分利用即将进行的Galaxy Surveys(例如Euclid和Rubin-lsst)提供的大型和复杂数据集至关重要。

At high redshift, due to both observational limitations and the variety of galaxy morphologies in the early universe, measuring galaxy structure can be challenging. Non-parametric measurements such as the CAS system have thus become an important tool due to both their model-independent nature and their utility as a straightforward computational process. Recently, convolutional neural networks (CNNs) have been shown to be adept at image analysis, and are beginning to supersede traditional measurements of visual morphology and model-based structural parameters. In this work, we take a further step by extending CNNs to measure well known non-parametric structural quantities: concentration ($C$) and asymmetry ($A$). We train CNNs to predict $C$ and $A$ from individual images of $\sim 150,000$ galaxies at $0 < z < 7$ in the CANDELS fields, using Bayesian hyperparameter optimisation to select suitable network architectures. Our resulting networks accurately reproduce measurements compared with standard algorithms. Furthermore, using simulated images, we show that our networks are more stable than the standard algorithms at low signal-to-noise. While both approaches suffer from similar systematic biases with redshift, these remain small out to $z \sim 7$. Once trained, measurements with our networks are $> 10^3$ times faster than previous methods. Our approach is thus able to reproduce standard measures of non-parametric morphologies and shows the potential of employing neural networks to provide superior results in substantially less time. This will be vital for making best use of the large and complex datasets provided by upcoming galaxy surveys, such as Euclid and Rubin-LSST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源