论文标题
动态校正的非绝热全体量子门
Dynamically Corrected Nonadiabatic Holonomic Quantum Gates
论文作者
论文摘要
实现耐断层量子计算的关键在于保持所有量子位的连贯性,从而可以实现高保真性和鲁棒的量子操作。有希望的方法之一是在通用量子门的构建中使用几何阶段,因为它们对某些类型的局部噪声的固有稳健性。但是,由于先前实施的局限性,非绝热全能量子计算(NHQC)的噪声弹性特征仍然需要改善。在这里,与动态校正技术相结合,我们提出了一种具有简化控制的通用NHQC的一般协议,该方案可以极大地抑制随附的X错误的效果,从而保留了几何量子操作的主要优点。数值模拟表明,我们门的性能可能比以前的协议要好得多。值得注意的是,当合并用于集体驱动噪声的无腐烂子空间编码时,我们的方案也可以与所涉及的Z误差相同。此外,我们还概述了对X和Z错误不敏感的协议的物理实现。因此,我们的协议为可扩展的耐故障量子计算提供了有希望的策略。
The key for realizing fault-tolerant quantum computation lies in maintaining the coherence of all qubits so that high-fidelity and robust quantum manipulations on them can be achieved. One of the promising approaches is to use geometric phases in the construction of universal quantum gates, due to their intrinsic robustness against certain types of local noises. However, due to limitations in previous implementations, the noise-resilience feature of nonadiabatic holonomic quantum computation (NHQC) still needs to be improved. Here, combining with the dynamical correction technique, we propose a general protocol of universal NHQC with simplified control, which can greatly suppress the effect of the accompanied X errors, retaining the main merit of geometric quantum operations. Numerical simulation shows that the performance of our gate can be much better than previous protocols. Remarkably, when incorporating a decoherence-free subspace encoding for the collective dephasing noise, our scheme can also be robust against the involved Z errors. In addition, we also outline the physical implementation of the protocol that is insensitive to both X and Z errors. Therefore, our protocol provides a promising strategy for scalable fault-tolerant quantum computation.