论文标题
HOPF分叉还激动了动力学
Hopf bifurcation in addition-shattering kinetics
论文作者
论文摘要
在聚集碎片过程中,通常在长期限制下达到稳态。这表明在普通微分方程的基础系统中存在固定点。下一个最简单的可能性是渐近的周期性运动。到目前为止,尚未确定永无止境的振荡,尽管最近在一些系统中检测到了振荡。对于一类动摇过程,我们为参数空间的某个区域$ \ MATHCAL {U} $在某个区域$ \ MATHCAL中提供了令人信服的数值证据。当参数属于$ \ MATHCAL {U} $并通过HOPF分叉有效地出现时,我们研究的过程允许一个固定点不稳定。
In aggregation-fragmentation processes, a steady state is usually reached in the long time limit. This indicates the existence of a fixed point in the underlying system of ordinary differential equations. The next simplest possibility is an asymptotically periodic motion. Never-ending oscillations have not been rigorously established so far, although oscillations have been recently numerically detected in a few systems. For a class of addition-shattering processes, we provide convincing numerical evidence for never-ending oscillations in a certain region $\mathcal{U}$ of the parameter space. The processes which we investigate admit a fixed point that becomes unstable when parameters belong to $\mathcal{U}$ and never-ending oscillations effectively emerge through a Hopf bifurcation.