论文标题

在Noether定理与绝热不变理论之间的相互作用上

On the interplay between Noether's theorem and the theory of adiabatic invariants

论文作者

Gourieux, Thierry, Leone, Raphaël

论文摘要

本文重点介绍将称为Rund-Trautman功能的重要数量。它已经在Noether定理中起着核心作用,因为它消失了对称性并导致保护法。本文的主要目的是展示在经典力学的领域中,伴随“几乎”对称性的“几乎”消失的rund-trautman函数会导致在绝热假设中的“几乎”运动常数,也就是说,即绝热不变。为此,首先详细介绍和分析了Rund-Trautman功能,然后将其用于一般的一维问题。最后,通过频率缓慢的谐波振荡器的示例来检查其在绝热环境中的相关性。值得注意的是,对于某些频率轮廓,通过它得出了绝热不变的显式扩展,并实现了说明性的数值测试。

This article focuses on an important quantity that will be called the Rund-Trautman function. It already plays a central role in Noether's theorem since its vanishing characterizes a symmetry and leads to a conservation law. The main aim of the paper is to show how, in the realm of classical mechanics, an 'almost' vanishing Rund-Trautman function accompanying an 'almost' symmetry leads to an 'almost' constant of motion within the adiabatic assumption, that is, to an adiabatic invariant. To this end, the Rund-Trautman function is first introduced and analysed in detail, then it is implemented for the general one-dimensional problem. Finally, its relevance in the adiabatic context is examined through the example of the harmonic oscillator with a slowly varying frequency. Notably, for some frequency profiles, explicit expansions of adiabatic invariants are derived through it and an illustrative numerical test is realized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源