论文标题
关于POD基插插的稳定性,通过Grassmann歧管以降低了超弹性的参数模型阶
On the stability of POD Basis Interpolation via Grassmann Manifolds for Parametric Model Order Reduction in Hyperelasticity
论文作者
论文摘要
这项工作认为,在超弹性中,对Grassmann歧管(PMOR)的GRASSMANN歧管上适当的正交分解(POD)基插值的稳定性。本文的贡献主要涉及稳定性条件,所有这些条件都是由强大的数学背景定义的。我们展示了如果不满足某些几何需求来通过对线性化的局部特征进行具体阐明,则如何丢失插值的稳定性。为此,我们特别注意该地图的格拉曼尼亚指数图和最佳注入性条件,与格拉斯曼歧管的切割有关。由此,建立了明确的稳定性条件,可以直接用于确定实际PMOR应用中注射率的损失。当增加模式的数字P时,从不同维度p的子空间的主要角度推导出来时,将制定另一个稳定条件。这种稳定性条件有助于解释误差 - 相对于POD模式数量的非单调振荡行为,相反,此处考虑的两个基准数值示例中误差单的单调降低。在这项研究下,PMOR使用非侵入性方法应用于超弹性结构,以在商业FEM代码中插入插值空间POD ROM。通过\ emph {a后验}误差规范来评估准确性,并使用ROM FEM解决方案及其高保真对应物模拟定义。数值研究成功确定并强调了稳定条件的含义。各种稳定性条件可以应用于基于POD基础插值通过Grassmann歧管的涉及参数化ROM的各种相关问题。
This work considers the stability of Proper Orthogonal Decomposition (POD) basis interpolation on Grassmann manifolds for parametric Model Order Reduction (pMOR) in hyperelasticity. The article contribution is mainly about stability conditions, all defined from strong mathematical background. We show how the stability of interpolation can be lost if certain geometrical requirements are not satisfied by making a concrete elucidation of the local character of linearization. To this effect, we draw special attention to the Grassmannian Exponential map and optimal injectivity condition of this map, related to the cut--locus of Grassmann manifolds. From this, explicit stability conditions are established and can be directly used to determine the loss of injectivity in practical pMOR applications. Another stability condition is formulated when increasing the number p of mode, deduced from principal angles of subspaces of different dimensions p. This stability condition helps to explain the non-monotonic oscillatory behavior of the error-norm with respect to the number of POD modes, and on the contrary, the monotonic decrease of the error-norm in the two benchmark numerical examples considered herein. Under this study, pMOR is applied in hyperelastic structures using a non-intrusive approach for inserting the interpolated spatial POD ROM basis in a commercial FEM code. The accuracy is assessed by \emph{a posteriori} error norms defined using the ROM FEM solution and its high fidelity counterpart simulation. Numerical studies successfully ascertained and highlighted the implication of stability conditions. The various stability conditions can be applied to a variety of other relevant problems involving parametrized ROMs generation based on POD basis interpolation via Grassmann manifolds.