论文标题
带有复发图神经网络的动态图上的可解释聚类
Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks
论文作者
论文摘要
我们研究了在动态图中聚类节点的问题,在该图中,节点和节点的群集成员身份之间的连接可能会随着时间而变化,例如由于社区迁移而变化。我们首先提出了一个动态随机块模型,该模型捕获了这些变化,以及一种基于衰减的群集算法,该算法将基于它们之间的加权连接插入节点,其中随着时间的推移,权重以固定速率下降。然后可以将此衰减率解释为表示将历史连接信息包括在聚类中的重要性。但是,离职率不同的集群可能会有所不同。我们表征了每个群集的最佳衰减率,并提出了一种聚类方法,该方法几乎可以实现真实簇的精确恢复。然后,我们证明了聚类算法在模拟图数据上具有优化的衰减率的功效。复发性神经网络(RNNS)是一种用于序列学习的流行算法,使用类似的基于衰减的方法,我们使用此洞察力来提出两个新的RNN-GCN(图形卷积网络)体系结构,用于半渗透的图形聚类。我们最终证明,与最先进的图形聚类算法相比,所提出的体系结构在实际数据上表现良好。
We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time, e.g., due to community migration. We first propose a dynamic stochastic block model that captures these changes, and a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time. This decay rate can then be interpreted as signifying the importance of including historical connection information in the clustering. However, the optimal decay rate may differ for clusters with different rates of turnover. We characterize the optimal decay rate for each cluster and propose a clustering method that achieves almost exact recovery of the true clusters. We then demonstrate the efficacy of our clustering algorithm with optimized decay rates on simulated graph data. Recurrent neural networks (RNNs), a popular algorithm for sequence learning, use a similar decay-based method, and we use this insight to propose two new RNN-GCN (graph convolutional network) architectures for semi-supervised graph clustering. We finally demonstrate that the proposed architectures perform well on real data compared to state-of-the-art graph clustering algorithms.